资源类型

期刊论文 47

年份

2023 6

2022 5

2021 4

2020 4

2019 4

2018 6

2016 1

2015 3

2014 2

2013 1

2012 3

2011 1

2010 2

2009 1

2008 2

2006 1

2000 1

展开 ︾

关键词

DX群桩 1

Tempotron;神经元模型;感受野;高斯差分;图像翻转;图像旋转 1

力学性能 1

反应增强 1

固定/旋转水动力空化反应器 1

数值计算 1

新疆 1

时温等效 1

本构模型 1

极限承载力 1

桩基础 1

水动力空化作用 1

生产建设兵团 1

碳酚醛 1

空化应用 1

空化核 1

粘弹性 1

羟基自由基 1

西部开发 1

展开 ︾

检索范围:

排序: 展示方式:

Decontamination of Cr(VI) facilitated formation of persistent free radicals on rice husk derived biochar

Kaikai Zhang, Peng Sun, Yanrong Zhang

《环境科学与工程前沿(英文)》 2019年 第13卷 第2期 doi: 10.1007/s11783-019-1106-7

摘要:

PFRs were produced on biochar during Cr(VI) decontamination.

PFRs formation on biochar was owing to the oxidization of phenolic-OH by Cr(VI).

Appearance of excessive oxidant led to the consumption of PFRs on biochar.

Biochar charred at high temperature possessed great performance to Cr(VI) removal.

关键词: Biochar     Persistent free radicals     Phenolic hydroxyl groups     Cr(VI) reduction    

Lignin-based polymer with high phenolic hydroxyl group content prepared by the alkyl chain bridging method

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1075-1084 doi: 10.1007/s11705-022-2272-x

摘要: Inspired by the importance of the phenolic group to the electron transporting property of hole transport materials, phenolic hydroxyl groups were introduced in lignosulfonate (LS) via the alkyl chain bridging method to prepare phenolated-lignosulfonate (PLS). The results showed that the phenolic group was boosted from 0.81 mmol∙g–1 of LS to 1.19 mmol∙g–1 of PLS. The electrochemical property results showed two oxidation peaks in the cyclic voltammogram (CV) curve of PLS, and the oxidation potential of the PLS-modified electrode decreased by 0.5 eV compared with that of LS. This result indicates that PLS is more easily oxidized than LS. Based on the excellent electron transporting property of PLS, PLS was applied as a dopant in poly(3,4-ethylenedioxythiophene) (PEDOT, called PEDOT:PLSs). PLS showed excellent dispersion properties for PEDOT. Moreover, the transmittance measurement results showed that the transmittance of PEDOT:PLSs exceeded 85% in the range of 300–800 nm. The CV results showed that the energy levels of PEDOT:PLSs could be flexibly adjusted by PLS amounts. The results indicate that the phenolic hydroxyl group of lignin can be easily boosted by the alkyl chain bridging method, and phenolated lignin-based polymers may have promising potential as dopants of PEDOT to produce hole transporting materials for different organic photovoltaic devices.

关键词: lignosulfonate     phenolic group     PEDOT:PLS     hole extract layer     energy level    

The catalytic effect of both oxygen-bearing functional group and ash in carbonaceous catalyst on CH 4 -CO 2 reforming

Weidong ZHANG, Yongfa ZHANG,

《化学科学与工程前沿(英文)》 2010年 第4卷 第2期   页码 147-152 doi: 10.1007/s11705-009-0242-1

摘要: A kind of new catalyst—carbonaceous catalyst—for CH-CO reformation has been developed in our laboratory. The effect of both oxygen-bearing functional group such as phenolic hydroxyl, carbonyl, carboxyl, and lactonic, and ash such as FeO, NaCO, and KCO in the carbonaceous catalyst on the CH-CO reforming has been investigated with a fixed-bed reactor. It has been found that the carbonaceous catalyst is an efficient catalyst on CO-CH reforming. With the decrease of oxygen-bearing functional group, the catalytic activity of carbonaceous catalyst decreases quickly. The oxygen-bearing functional groups play a significant role in the carbonaceous-catalyzed CO-CH reforming; the ash components in carbonaceous catalyst also have an important influence on the CO-CH reforming. FeO, NaCO, and KCO in the ash can catalyze the CO-CH reforming reaction; CaO has little effect on CO-CH reforming reaction. CaO can catalyze the gasification between carbonaceous catalyst and CO; AlO and MgO inhibit the CO-CH reforming.

关键词: oxygen-bearing functional     carboxyl     phenolic hydroxyl     CH-CO reformation     CO-CH reforming    

Immobilization of laccase on organic–inorganic nanocomposites and its application in the removal of phenolic

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 867-879 doi: 10.1007/s11705-022-2277-5

摘要: Polydopamine-functionalized nanosilica was synthesized using an inexpensive and easily obtainable raw material, mild reaction conditions, and simple operation. Subsequently, a flexible spacer arm was introduced by using dialdehyde starch as a cross-linking agent to bind with laccase. A high loading amount (77.8 mg∙g‒1) and activity retention (75.5%) could be achieved under the optimum immobilization conditions. Thermodynamic parameters showed that the immobilized laccase had a lower thermal deactivation rate constant and longer half-life. The enhancement of thermodynamic parameters indicated that the immobilized laccase had better thermal stability than free laccase. The residual activity of immobilized laccase remained at about 50.0% after 30 days, which was 4.0 times that of free laccase. Immobilized laccase demonstrated excellent removal of phenolic pollutants (2,4-dichlorophenol, bisphenol A, phenol, and 4-chlorophenol) and perfect reusability with 70% removal efficiency retention for 2,4-dichlorophenol after seven cycles. These results suggested that immobilized laccase possessed great reusability, improved thermal stability, and excellent storage stability. Organic–inorganic nanomaterials have a good application prospect for laccase immobilization, and the immobilized laccase of this work may provide a practical application for the removal of phenolic pollutants.

关键词: polydopamine     pollutant removal     thermodynamic     phenolic pollutants     immobilized laccase    

Effects of functional groups for CO

Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 437-449 doi: 10.1007/s11705-020-1961-6

摘要: Metal organic frameworks (MOFs) are promising adsorbents for CO capture. Functional groups on organic linkers of MOFs play important roles in improving the CO capture ability by enhancing the CO sorption affinity. In this work, the functionalization effects on CO adsorption were systematically investigated by rationally incorporating various functional groups including –SO H, –COOH, –NH , –OH, –CN, –CH and –F into a MOF-177 template using computational methods. Asymmetries of electron density on the functionalized linkers were intensified, introducing significant enhancements of the CO adsorption ability of the modified MOF-177. In addition, three kinds of molecular interactions between CO and functional groups were analyzed and summarized in this work. Especially, our results reveal that –SO H is the best-performing functional group for CO capture in MOFs, better than the widely used –NH or –F groups. The current study provides a novel route for future MOF modification toward CO capture.

关键词: metal-organic frameworks     functional groups     CO2 capture     GCMC     DFT    

A pulsed switching peroxi-coagulation process to control hydroxyl radical production and to enhance 2,4

Yaobin Lu, Songli He, Dantong Wang, Siyuan Luo, Aiping Liu, Haiping Luo, Guangli Liu, Renduo Zhang

《环境科学与工程前沿(英文)》 2018年 第12卷 第5期 doi: 10.1007/s11783-018-1070-7

摘要:

• A new pulsed switching peroxi-coagulation (PSPC) system was developed.

• The ECT for 2,4-D removal in the PSPC was lower than that in the EF.

• The iron consumption for 2,4-D removal in the PSPC was lower than that in the PC.

关键词: Pulsed switching peroxi-coagulation system     Energy consumption     Hydroxyl radical production     2     4- Dichlorophenoxyacetic acid    

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1221-1230 doi: 10.1007/s11705-023-2298-8

摘要: The vanadium redox flow battery with a safe and capacity-controllable large-scale energy storage system offers a new method for the sustainability. In this case, acetic acid, methane sulfonic acid, sulfonic acid, amino methane sulfonic acid, and taurine are used to overcome the low electrolyte energy density and stability limitations, as well as to investigate the effects of various organic functional groups on the vanadium redox flow battery. When compared to the pristine electrolyte (0.22 Ah, 5.0 Wh·L–1, 85.0%), the results show that taurine has the advantage of maintaining vanadium ion concentrations, discharge capacity (1.43 Ah), energy density (33.9 Wh·L–1), and energy efficiency (90.5%) even after several cycles. The acetic acid electrolyte is more conducive to the low-temperature stability of the V(II) electrolyte (177 h at −25 °C) than pristine (82 h at −2 °C). The –SO3H group, specifically the coaction of the –NH2 and –SO3H groups, improves electrolyte stability. The –NH2 and –COOH additive groups improved conductivity and electrochemical activity.

关键词: vanadium redox flow battery     functional groups     organic additives     energy density     stability    

Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1060-1078 doi: 10.1007/s11705-021-2117-z

摘要: Novel near-infrared sensitizers with different anchoring groups aiming toward improved stability and efficiency of dye-sensitized solar cells were synthesized. Adsorption of these dyes on the mesoporous TiO2 surface revealed the dye adsorption rate of –CH=CH–COOH (SQ-139)>–CH=C(CN)COOH (SQ-140)>–PO3H2 (SQ-143)>–CH=C(CN)PO3H2 (SQ-148)>–CH=C(CN)PO3H–C2H5 (SQ-157)>–PO3H–C2H5 (SQ-151)>–CH=CH–COOH(–PO3H2) (SQ-162). The binding strength of these dyes on mesoporous TiO2 as investigated by dye desorption studies follows SQ-162>SQ-143>SQ-148>SQ-139>SQ-157~SQ-151>SQ-140 order. The acrylic acid anchoring group was demonstrated to be an optimum functional group owing to its fast dye adsorption rate and better binding strength on TiO2 along with good photoconversion efficiency. Results of dye binding on TiO2 surface demonstrated that SQ-162 bearing double anchoring groups of phosphonic and acrylic acid exhibited>550 times stronger binding as compared to dye SQ-140 having cyanoacrylic acid anchoring group. SQ-140 exhibited the best photovoltaic performance with photon harvesting mainly in the far-red to near-infrared wavelength region having short circuit current density, open-circuit voltage and fill factor of 14.28 mA·cm–2, 0.64 V and 0.65, respectively, giving the power conversion efficiency of 5.95%. Thus, dye SQ-162 not only solved the problem of very poor efficiency of dye bearing only phosphonic acid while maintaining the extremely high binding strength opening the path for the design and development of novel near-infrared dyes with improved efficiency and stability by further increasing the π-conjugation.

关键词: anchoring groups     adsorption behaviour     dye-binding strength     squaraine dyes     dye-sensitized solar cells    

Influence of axial load on the lateral pile groups response in cohesionless and cohesive soil

Jasim M. ABBASA,Zamri CHIK,Mohd Raihan TAHA

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 176-193 doi: 10.1007/s11709-015-0289-7

摘要: The lateral response of single and group of piles under simultaneous vertical and lateral loads has been analyzed using a 3D finite element approach. The response in this assessment considered lateral pile displacement and lateral soil resistance and corresponding - curve. As a result, modified - curves for lateral single pile response were improved with respect to the influence of increasing axial load intensities. The improved plots can be used for lateral loaded pile design and to produce the group action design -multiplier curves and equations. The effect of load combination on the lateral pile group response was performed on three pile group configurations (i.e., 2×1, 2×2 and 3×2) with four pile spacings (i.e., = 2 , 4 , 6 and 8 ). As a result, design curves were developed and applied on the actual case studies and similar expected cases for assessment of pile group behavior using improved p-multiplier. A design equation was derived from predicted design curves to be used in the evaluation of the lateral pile group action taking into account the effect of axial load intensities. It was found that the group interaction effect led to reduced lateral resistance for the pile in the group relative to that for the single pile in case of pure lateral load. While, in case of simultaneous combined loads, large axial load intensities (i.e., more than 6 , where is lateral load values) will have an increase in -multiplier by approximately 100% and will consequently contribute to greater group piles capacities.

关键词: piles     pile group     spacing     configuration     combined load    

Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 504-515 doi: 10.1007/s11705-022-2260-1

摘要: Phenolic resins were employed to prepare electrospun porous carbon nanofibers with a high specific surface area as free-standing electrodes for high-performance supercapacitors. However, the sustainable development of conventional phenolic resin has been challenged by petroleum-based phenol and formaldehyde. Lignin with abundant phenolic hydroxyl groups is the main non-petroleum resource that can provide renewable aromatic compounds. Hence, lignin, phenol, and furfural were used to synthesize bio-based phenolic resins, and the activated carbon nanofibers were obtained by electrospinning and one-step carbonization activation. Fourier transform infrared and differential scanning calorimetry were used to characterize the structural and thermal properties. The results reveal that the apparent activation energy of the curing reaction is 89.21 kJ·mol–1 and the reaction order is 0.78. The activated carbon nanofibers show a uniform diameter, specific surface area up to 1100 m2·g–1, and total pore volume of 0.62 cm3·g–1. The electrode demonstrates a specific capacitance of 238 F·g–1 (0.1 A·g–1) and good rate capability. The symmetric supercapacitor yields a high energy density of 26.39 W·h·kg–1 at 100 W·kg–1 and an excellent capacitance retention of 98% after 10000 cycles. These results confirm that the activated carbon nanofiber from bio-based phenolic resins can be applied as electrode material for high-performance supercapacitors.

关键词: lignin     bio-based phenolic resins     electrospinning     activated carbon nanofibers     supercapacitors    

Rapid method for on-site determination of phenolic contaminants in water using a disposable biosensor

Yuanting LI, Dawei LI, Wei SONG, Meng LI, Jie ZOU, Yitao LONG

《环境科学与工程前沿(英文)》 2012年 第6卷 第6期   页码 831-838 doi: 10.1007/s11783-012-0393-z

摘要: A disposable biosensor was fabricated using single-walled carbon nanotubes, gold nanoparticles and tyrosinase (SWCNTs-AuNPs-Tyr) modified screen-printed electrodes. The prepared biosensor was applied to the rapid determination of phenolic contaminants within 15 minutes. The SWCNTs-AuNPs-Tyr bionanocomposite sensing layer was characterized with scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry methods. The characterization results revealed that SWCNTs could lead to a high loading of tyrosinase (Tyr) with the large surface area and the porous morphology, while AuNPs could retain the bioactivity of Tyr and enhance the sensitivity. The detection conditions, including working potential, pH of supporting electrolyte and the amount of Tyr were optimumed. As an example, the biosensor for catechol determination displayed a linear range of 8.0 × 10 to 2.0 × 10 mol·L with a detection limit of 4.5 × 10 mol·L (S/ = 3). This method has a rapid response time within 10 s, and shows excellent repeatability and stability. Moreover, the resulting biosensor could be disposable, low-cost, reliable and easy to carry. This kind of new Tyr biosensor provides great potential for rapid, on-site and cost-effective analysis of phenolic contaminants in environmental water samples.

关键词: on-site determination     tyrosinase biosensor     phenolic contaminants     single-walled carbon nanotubes     gold nanoparticles     screen-printed electrodes    

Hydroxyl radical-involved cancer therapy via Fenton reactions

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 345-363 doi: 10.1007/s11705-021-2077-3

摘要: The tumor microenvironment features over-expressed hydrogen peroxide (H2O2). Thus, versatile therapeutic strategies based on H2O2 as a reaction substrate to generate hydroxyl radical (•OH) have been used as a prospective therapeutic method to boost anticancer efficiency. However, the limited Fenton catalysts and insufficient endogenous H2O2 content in tumor sites greatly hinder •OH production, failing to achieve the desired therapeutic effect. Therefore, supplying Fenton catalysts and elevating H2O2 levels into cancer cells are effective strategies to improve •OH generation. These therapeutic strategies are systematically discussed in this review. Furthermore, the challenges and future developments of hydroxyl radical-involved cancer therapy are discussed to improve therapeutic efficacy.

关键词: hydroxyl radical     Fenton catalyst     hydrogen peroxide     cancer therapy    

Insight into the effect of surface carboxyl and amino groups on the adsorption of titanium dioxide for

Wenlong Zhang, Xuyang Zhao, Lin Zhang, Jinwei Zhu, Shanshan Li, Ping Hu, Jiangtao Feng, Wei Yan

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1147-1157 doi: 10.1007/s11705-020-1978-x

摘要: In this study, TiO functionalized with organic groups were prepared to study the effect of carboxyl and amino groups on the adsorption behavior of TiO for the removal of acid red G (ARG) as an anionic dye from aqueous solution. TiO was successfully modified with carboxyl and amino groups by using the hydrolysis method with oxalic acid (OAD, with two carboxyl groups), ethylenediamine (EDA, with two amino groups) and DL-alanine (DLA, with one carboxyl group and one amino group) at low temperature (65 °C) and labeled as OAD-TiO , EDA-TiO and DLA-TiO , respectively. The ARG uptake by the functionalized TiO samples was largely dependent on the functional groups. The interaction between ARG and the functional organic groups on the TiO samples plays an important role in the adsorption process, which leads to the excellent adsorption performance (higher capacity and faster adsorption rate) of the functionalized TiO samples than that of P25 (commercial TiO without modification). Furthermore, there is no obvious loss of the adsorption capacity for the functionalized TiO even after 5 adsorption-desorption cycles, which indicated the good reusability of the modified TiO samples for anionic dye removal from aqueous solution.

关键词: amino group     carboxylic group     titanium dioxide     ARG     adsorption    

Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant

Xuefeng Liu, Shijie You, Fang Ma, Hao Zhou

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1345-7

摘要: Abstract • Electrode fouling is characterized by non-destructive characterization. • Electrode fouling is highly dependent on electrochemical process. • Active chlorine can prevent the formation of polymeric fouling film. Electrode fouling is a problem that commonly occurs during electro-oxidation water purification. This study focused on identifying the fouling behavior of Pt electrode associated with the formation of polymeric layer during electro-oxidation of phenol. The in situ electrochemical measurements and non-destructive observation of the electrode morphology were reported. The results demonstrated that the electrode fouling was highly dependent on thermodynamic process of electrode that was controlled by anode potential. At anode potential lower than 1.0 V vs SHE, the direct electro-oxidation caused the electrode fouling by the formation of polymeric film. The fouling layer decreased the electrochemically active surface area from 8.38 cm2 to 1.57 cm2, indicated by the formation of polymeric film with thickness of 2.3 mm, increase in mass growing at a rate of 3.26 μg/cm2/min. The degree to which the anode was fouled was independent of anion in the electrolyte. In comparison, at anode potential higher than 2.7 V vs SHE, the anions (e.g., chloride) could exert a major influence to the behavior of electrode fouling. The presence of chloride was shown to mitigate the fouling of electrode significantly through preventing the formation of polymeric film by active chlorine (e.g., Cl• and Cl2) produced from anodic oxidation of chloride. Since chloride is the most abundant anionic species existing in both natural and engineered water system, this study not only offers a deep insight into the mechanism of electrode fouling, but also suggests strategies for anti-fouling in the presence of chloride in electro-oxidation process.

关键词: Electro-oxidation     Electrode fouling     Polymeric film     Chloride ions    

Kinetics and mechanism of nitrobenzene degradation by hydroxyl radicals-based ozonation process enhanced

Weizhou Jiao, Shengjuan Shao, Peizhen Yang, Kechang Gao, Youzhi Liu

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1197-1205 doi: 10.1007/s11705-020-1998-6

摘要: This study investigated the indirect oxidation of nitrobenzene (NB) by hydroxyl radicals (·OH) in a rotating packed bed (RPB) using competitive kinetics method with -nitrochlorobenzene as a reference compound. The rate constants of NB with ·OH are calculated to be between (1.465±0.113) × 10 L/(mol·s) and (2.497±0.192) × 10 L/(mol·s). The experimental data are fitted by the modified Arrhenius equation, where the activation energy is 4877.74 J/mol, the order of NB concentration, rotation speed, and initial pH is 0.2425, 0.1400 and 0.0167, respectively. The ozonation process of NB could be enhanced by RPB, which is especially effective for highly concentrated NB-containing wastewater under alkaline conditions. The high gravity technology can accelerate ozone mass transfer and self-decomposition of ozone to produce more ·OH, resulting in an increase in the indirect oxidation rate of NB by ·OH and consequently effective degradation of NB in wastewater.

关键词: high gravity technology     hydroxyl radicals     nitrobenzene     reaction kinetics    

标题 作者 时间 类型 操作

Decontamination of Cr(VI) facilitated formation of persistent free radicals on rice husk derived biochar

Kaikai Zhang, Peng Sun, Yanrong Zhang

期刊论文

Lignin-based polymer with high phenolic hydroxyl group content prepared by the alkyl chain bridging method

期刊论文

The catalytic effect of both oxygen-bearing functional group and ash in carbonaceous catalyst on CH 4 -CO 2 reforming

Weidong ZHANG, Yongfa ZHANG,

期刊论文

Immobilization of laccase on organic–inorganic nanocomposites and its application in the removal of phenolic

期刊论文

Effects of functional groups for CO

Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu

期刊论文

A pulsed switching peroxi-coagulation process to control hydroxyl radical production and to enhance 2,4

Yaobin Lu, Songli He, Dantong Wang, Siyuan Luo, Aiping Liu, Haiping Luo, Guangli Liu, Renduo Zhang

期刊论文

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium

期刊论文

Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability

期刊论文

Influence of axial load on the lateral pile groups response in cohesionless and cohesive soil

Jasim M. ABBASA,Zamri CHIK,Mohd Raihan TAHA

期刊论文

Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes

期刊论文

Rapid method for on-site determination of phenolic contaminants in water using a disposable biosensor

Yuanting LI, Dawei LI, Wei SONG, Meng LI, Jie ZOU, Yitao LONG

期刊论文

Hydroxyl radical-involved cancer therapy via Fenton reactions

期刊论文

Insight into the effect of surface carboxyl and amino groups on the adsorption of titanium dioxide for

Wenlong Zhang, Xuyang Zhao, Lin Zhang, Jinwei Zhu, Shanshan Li, Ping Hu, Jiangtao Feng, Wei Yan

期刊论文

Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant

Xuefeng Liu, Shijie You, Fang Ma, Hao Zhou

期刊论文

Kinetics and mechanism of nitrobenzene degradation by hydroxyl radicals-based ozonation process enhanced

Weizhou Jiao, Shengjuan Shao, Peizhen Yang, Kechang Gao, Youzhi Liu

期刊论文